Complex intrinsic membrane properties and dopamine shape spiking activity in a motor axon.
نویسندگان
چکیده
We studied the peripheral motor axons of the two pyloric dilator (PD) neurons of the stomatogastric ganglion in the lobster, Homarus americanus. Intracellular recordings from the motor nerve showed both fast and slow voltage- and activity-dependent dynamics. During rhythmic bursts, the PD axons displayed changes in spike amplitude and duration. Pharmacological experiments and the voltage dependence of these phenomena suggest that inactivation of sodium and A-type potassium channels are responsible. In addition, the "resting" membrane potential was dependent on ongoing spike or burst activity, with more hyperpolarized values when activity was strong. Nerve stimulations, pharmacological block and current clamp experiments suggest that this is due to a functional antagonism between a slow after-hyperpolarization (sAHP) and inward rectification through hyperpolarization-activated current (IH). Dopamine application resulted in modest depolarization and "ectopic" peripheral spike initiation in the absence of centrally generated activity. This effect was blocked by CsCl and ZD7288, consistent with a role of IH. High frequency nerve stimulation inhibited peripheral spike initiation for several seconds, presumably due to the sAHP. Both during normal bursting activity and antidromic nerve stimulation, the conduction delay over the length of the peripheral nerve changed in a complex manner. This suggests that axonal membrane dynamics can have a substantial effect on the temporal fidelity of spike patterns propagated from a spike initiation site to a synaptic target, and that neuromodulators can influence the extent to which spike patterns are modified.
منابع مشابه
Membrane Capacitive Memory Alters Spiking in Neurons Described by the Fractional-Order Hodgkin-Huxley Model
Excitable cells and cell membranes are often modeled by the simple yet elegant parallel resistor-capacitor circuit. However, studies have shown that the passive properties of membranes may be more appropriately modeled with a non-ideal capacitor, in which the current-voltage relationship is given by a fractional-order derivative. Fractional-order membrane potential dynamics introduce capacitive...
متن کاملOptogenetic stimulation reveals distinct modulatory properties of thalamostriatal vs corticostriatal glutamatergic inputs to fast-spiking interneurons
Parvalbumin-containing fast-spiking interneurons (FSIs) exert a powerful feed-forward GABAergic inhibition on striatal medium spiny neurons (MSNs), playing a critical role in timing striatal output. However, how glutamatergic inputs modulate their firing activity is still unexplored. Here, by means of a combined optogenetic and electrophysiological approach, we provide evidence for a differenti...
متن کاملIntrinsic and thalamic excitatory inputs onto songbird LMAN neurons differ in their pharmacological and temporal properties.
In passerine songbirds, the lateral portion of the magnocellular nucleus of the anterior neostriatum (LMAN) plays a vital role in song learning, possibly by encoding sensory information and providing sensory feedback to the vocal motor system. Consistent with this, LMAN neurons are auditory, and, as learning progresses, they evolve from a broadly tuned initial state to a state of strong prefere...
متن کاملIn-phase and anti-phase synchronization in noisy Hodgkin-Huxley neurons.
We numerically investigate the influence of intrinsic channel noise on the dynamical response of delay-coupling in neuronal systems. The stochastic dynamics of the spiking is modeled within a stochastic modification of the standard Hodgkin-Huxley model wherein the delay-coupling accounts for the finite propagation time of an action potential along the neuronal axon. We quantify this delay-coupl...
متن کاملPresentation Title: Subcellular Cooperativity and Ectopic Spiking in Demyelinated Axon Models and Thalamocortical Circuits
Topic: ++B.10.a. Neural oscillators and activity-dependent plasticity of intrinsic membrane properties Abstract: Axons undergoing demyelination can produce a wide variety of firing patterns from conduction failure to afterdischarge (AD) and spontaneous spiking. AD requires slow positive feedback, represented in our model by a persistent Na conductance (gnap) and can be terminated by rundown of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 16 شماره
صفحات -
تاریخ انتشار 2009